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Abstract

In order to decrease overall computational time requirements of a spatially-marching

Parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid

flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented.

This numerical effort increases computational speed and calculates reasonably accurate

wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear

stress is analytically determined from the wall-function model, the computational grid near

the wall is not required to spatially resolve the laminar-viscous sub-layer. Consequently,

a substantially increased computational integration step size is achieved resulting in a

considerable decrease in net computational time. This wall-function technique is demon-

strated for adiabatic flat plate test cases from Mach-2 to Mach-8. These test cases are

analytically verified employing: (1) Eckert reference method solutions, (2) experimen-

tal turbulent boundary-layer data of Mabey, and (3) finite-difference computational code

solutions with fully resolved laminar-viscous sub-layers. Additionally, results have been

obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an

adiabatic compression corner.
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1. INTRODUCTION

1.1 Research Topic

To accurately resolve both the viscous drag and heat transfer effects of a compress-

ible turbulent flowfield, standard computational fluid dynamics (CFD) techniques require

prohibitive amounts of computational time for problems of engineering interest. Numer-

ous researchers have demonstrated that to accurately calculate a turbulent boundary layer

employing finite-difference computational techniques at least one grid point must reside

in the laminar-viscous sub-layer (i.e. the inner portion of a turbulent boundary layer) [ 1].

Hence, for turbulent boundary-layer calculations, the first grid point off the wall must be

at a y+_< 1-2 (denoted as the fully-gridded CFD case throughout the text). The parameter

y+ is the transformed coordinate of the normal-wall coordinate, y, defined by,

v+ _ Y , (1)
I_u,

where 7-w is the wall shear stress, pw is the wall density, and/_w is the wall viscosity.

When this y+ constraint is applied to a uniform grid-generating scheme, typically a

computational grid is generated with hundreds of grid points in the boundary layer,

which ultimately requires a very small integration step size between solution planes.

Numerous investigations have addressed the grid spacing problem with grid stretching

algorithms being one of the most commonly employed solution methodologies [1]. Grid-

stretching algorithms yield non-uniform grids with grid points clustered in high gradient

regions. Unfortunately, this approach only moderately influences the computational

time expenditures necessary to derive meaningful engineering calculations. Hence, wall-



function methodsareutilized to substantiallyreducethecomputationaltime necessaryto

generatesolutionsfor turbulent flowfields.

1.2 Wall-Function Methods

In general, wall-function methods calculate an analytic inner-flowfield solution and

patch this inner solution to a numerically-generated outer-flowfield solution at a location

denoted as the match point. At the match point, the shear stress, velocity, and turbulent

viscosity (or equivalent quantities) are matched, implying that the computations of these

quantities using a wall-function method are used as boundary conditions for CFD codes.

Typically, the match point is in the logarithmic region of a turbulent boundary layer,

between a y+ of 40 and a y+ of 400, seen for example in Figure 1 for incompressible

flow, taken from reference [1].
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Figure 1: Law-of-the-Wall Velocity Profile.



The non-dimensional velocity, u +, is defined as,

tt-+= It
u* ' (2)

where u* is the shear-stress velocity (commonly denoted as Ur) and Re 0 is the Reynolds

number based on momentum thickness. Researchers have developed methods to ana-

lytically calculate the inner region of the boundary layer without having to explicitly

solve the equations of motion in that region. In short, the law-of-the-wall is the basis

for wall-function methods. Numerous methods require that the user specify the location

of the match point to lie within the inner portion of the boundary layer at each stream-

wise location. These approaches do not easily allow for the optimum placement of the

match point [2].

1.3 Defect Wall-Function Method

The Barnwell and Wahls [3, 4, 5, 2] wall-function method was developed for analysis

of both incompressible and compressible flows, adiabatic and non-adiabatic flows, and

zero pressure-gradient and non-zero pressure-gradient cases. This method differs from

previous wall-function methods in many aspects. The Barnwell and Wahls method uses

analytic-velocity functions, the law-of-the-wall, the law-of-the-wake, and the defect-

stream function, to calculate wall shear stress and slip-wall boundary conditions consistent

with the inner and outer analytic-flowfield solutions. Since the wall shear stress is

analytically calculated, the first grid point off the wall does not lie within the laminar-

viscous sub-layer, thereby eliminating the prohibitive grid spacing constraint. The slip-



wall boundaryconditions are employedby numericalcodesto generatesolutionsby

computing the flowfield all the way to the wall and thus, there is no needto patch

an analytic-innersolution to an outer solution generatednumerically. Consequently,

the computedinner layer is non-physicaland an extensionof the outer layer to the

wall. This eliminatesthe needfor an inner turbulenteddy-viscositymodel [2], hence,

theouter turbulenteddy-viscositymodelgeneratesviscosityvaluesat all numericalgrid

points. Previousmethodsemployedthe inner-layeranalytic-velocityfunctions as the

inner-flowfield solutionand patcheda numericallycalculatedouter-layersolution to the

analyticallycalculatedinner-layersolutionatthematchpointconsistentwith theboundary

conditions at the matchpoint.

The grid point wherethe innerandouter layersmeetis denotedasthe matchpoint.

One of the advantagesof the Barnwell and Wahlswall-function methodis specifically

relatedto the calculationof the matchpoint location. Specifically, this wall-function

method calculatesthe locationof the match point, whereasnumerousother methods

requiredtheuserto specifythematchpointlocation(notethatthematchpointis afunction

of streamwiselocation). The BarnwellandWahlsmethodself adjuststhe locationof the

matchpoint at eachstreamwisepositionand thereforeis easierto implement,sinceno

userspecifiedinformationaboutthe matchpoint is requireda priori. Additionally, the

Barnwell andWahls[2] matchpointis forcedto beat theoptimumlocation(i.e. theouter

edgeof the inner layer) andthuspotentiallyallows for largergrid spacingascompared

to thoseof previouswall-function methods.

The analytic functionsemployedby this wall-function methodare: (1) the law-of-



the-wall and law-of-the-wakefor the inner portion of the boundarylayer, and (2) the

defect-streamfunction for the outer portion of the boundarylayer. These functions

are discussedin detail in Section2.2. Another advantageof the Barnwell and Wahls

methodis the useof the law-of-the-wakeas part of the inner-layervelocity function.

The law-of-the-wakeextendsthe effectiveregionof the law-of-the-walland alsoallows

thestreamwisepressuregradientto influencethe innerregionof the boundarylayer [2].

The law-of-the-wakehasbeenusedin other researchto describethe velocity profile for

the outer region of the boundarylayer [6], but in this developmentit is only usedfor

the inner region. In short, the Barnwell and Wahlswall-function methodusesonly the

defect-streamfunction to evaluatethe outer-layeranalytic-velocityprofile.

The defect-streamfunction is basedupon studies by Clauser[7] of equilibrium

turbulent boundarylayers. Clauserdefined a boundarylayer to be in equilibrium if

the following condition is satisfied,

- constant, (3)
"r., da"

* dp
where 5i is a boundary-layer displacement thickness parameter and 7_ is the streamwise

pressure gradient. This condition, if satisfied, represents a balance between the pressure

forces and the shear forces in a turbulent boundary layer [8] and is assumed to be valid

for all turbulent cases analyzed in this research. The zero pressure-gradient case is a

special case of equilibrium boundary-layer flow.

In the Barnwell and Wahls wall-function method a slip (non-zero) streamwise veloc-

ity, consistent with the analytically calculated wall shear stress, is imposed at the wall to



permit integrationto the wall. In contrast,standardCFDcodesexplicitly setthestream-

wise velocity on solid surfaces to zero. To determine the slip-wall velocity, the velocity

gradient at the wall is calculated from the definition of shear stress,

Ou I ru, (4)Oy w #l + #t

where the laminar viscosity, tq, is calculated employing Sutherland's law [91 and the tur-

bulent eddy viscosity, #t, is calculated using the Baldwin-Lomax turbulence model [10].

A first order finite-difference approximation of the velocity gradient is used to define the

consistent slip streamwise velocity at the wall, Us,

= = y(1)] , (51

where u(1) is the streamwise velocity at the wall, u(2) is the streamwise velocity at the

first grid point off the wall, y(1) is the y-location of the wall, and y(2) is the y-location

of the first grid point off the wall. The slip-wall velocity is subsequently utilized as a

boundary condition for a CFD code to numerically calculate the entire flowfield (i.e. a

CFD code integrates the entire distance to the wall). Furthermore, a slip-wall density and

slip-wall temperature are calculated consistent with the slip-wall velocity.

This research effort investigated the application of the Barnwell and Wahls wall-

function methodology to reduce the time requirements of a Parabolized Navier-Stokes

(PNS) CFD code, developed by Korte [9]. The code uses an explicit, upwind, space-

marching finite-difference scheme to eliminate time as a variable and permits the use of

a non-iterative or single-pass technique to resolve the flowfield. The PNS equations are

commonly utilized (when relevant), instead of the full set of Navier-Stokes equations,

6



sincelesscomputermemoryandlesscomputationaltimeareneededto generatesolutions.

The PNS equationshave beenshownby researchersto accuratelycalculateflowfields

within reasonabletime constraints[1].

1.4 Computational Fluid Dynamics Code

The finite-difference code used in this research effort solves the Parabolized Navier-

Stokes (PNS) equations with an explicit, upwind space-marching scheme [9]. The PNS

equations are derived from the full set of unsteady Navier-Stokes equations by neglecting

the unsteady terms, neglecting the stress and heat flux terms with respect to the streamwise

direction, and neglecting a fraction of the subsonic streamwise pressure gradient by

employing Vigneron's coefficient, _. Vigneron's coefficient has a valid range of 0.0-1.0

and is applied with a safety factor, a, in the following form,

(6)

where

1 > 1)a: = _,,,u_ , (7)
,+(-_-I)M: (,'_I( < 1)

where a typical value of o- has been taken to be around 0.75 for this research, M_ is the

axial Mach number, and 7 is the ratio of specific heats. The PNS equations are a mixed

set of hyperbolic-parabolic differential equations assuming that the inviscid portion of the

flow is supersonic and the streamwise velocity is positive. The latter constraint demands

that the flow be attached at all streamwise locations (i.e. streamwise flow separation is

not permitted) [1].



The PNS equations,in general,areapplicableto two or three-dimensional,steady,

supersonic,viscous flowfields without streamwiseseparation. The advantageof the

implementationof thePNSequationscomparedto thefull setof Navier-Stokesequations

is thatthe solutionis obtainedwith anefficient space-marchingmethod,producingfaster

executiontimes and using lesscomputermemory.

The non-dimensionalform of thetwo-dimensionalPNSequations,usedin thefinite-

difference code developedby Korte [9], are presentedin the transformedcoordinate

system,_-r/.

geometries.

where

The transformedcoordinatesystemwas developedto handle complex

The governingPNS equationis:

F r/y ¢

(8)

_=_(x*) ,_= _(x',y*) , (9)

E = Ei - E o F = Fi - Fv , (10)

E, = E* +P , (11)

g.... }
E* = p°u u +,.'p

p'It*V*

(e_+p')u"

(12)

p {0)(1-,_)p"
0

0

(13)

U,* * p* * *rxxq-t rxy--qx

(14)



I p'v* }

p*V'U*

Fi = p'v*v'+p*

(c_+p')v"

(15)

{ 0 }F_= _
r_

u r_y+v r_y-qy

, (16)

et=p* e*+ , (17)

where e is the internal energy, et is the total energy, J is the Jacobian of the transformation,

p is the pressure, q is the heat flux, u and v are the velocity components, p is the density, r

is the shear stress, and the superscript * implies a non-dimensional quantity. The subscript

'T' denotes an inviscid parameter and the subscript "v" denotes a viscous parameter.

The variables in equations (9) through (17) have been non-dimensionalized with the

following relations,

, x , y
X =-- y --_- --

L L

, 11 , V , p

U_ U_ p_

p* - P T* T #, I_
p_ U_ Too # oo

, T , e

(18)

where oo denotes freestream conditions, L is the characteristic length, and T is the

temperature.

The parabolized forms of the shear stress, r, and heat flux, q, terms in the transformed



coordinates for the above equations are:

2." [2(,_.,,)-(,/.v.,)]
rzx 3RCL

$ $' #' [(,l.,,,,)- (,l_v,,)]
rzY- RCL

$ -- --#* r $

q_- (_ ,)_ , (,i,L,)- _ 1_ Re L Pr

_ 2,," [2(,j_v;)- (,1_,,,)]T*

u# 3ReL

qu = (7- 1)M_RcLPr

where

(19)

* * (20)ff =t_'+,"t

and ReL is the Reynolds number based on the characteristic length and Pr is the Prandtl

number. The non-dimensional laminar viscosity is calculated using Sutherland's equation

shown below,

, _( 1+ r., ) (21)
Itl = T*'_ \'1 q- Tref,]• 1$ •

where

110.4 K
TTef -- (22)7_o

The calculation of the turbulent viscosity is discussed in Section 2.1.

One of the important features of this finite-difference code is the non-uniform grid

capability. The grid points are clustered near the wall to ensure adequate resolution of

the laminar-viscous sub-layer where the gradients between grid points are large, and a

sparser grid is used farther from the wall where the gradients are smaller. The grid point

locations are generated employing a typical Robert's stretching function [1], which has

10



beenmodified by Korte to havethe following form,

Y(J) = Ymin + (Yma_ -- Y,,in) 1 -- s fact + sden ] ' (23)

where Ymin and Ymax are the y-locations of the boundary of the computational domain.

One of the parameters to control the stretching, sden, is a function of the grid point

number, j, and the stretching factor, sfact, given as,

-_z=z

(s fact + 1 ) ._-1sden = 1 + \s fact - 1 ' (24)

where nj is the total number of grid points in the field. The stretching factor controls

the clustering of the numerical grid near the wall. Typical values for sfact range from

1.01 to 1.000001 depending on the grid resolution required. Examples of the effect of

the stretching factor on grid point location using the same total number of grid points

are presented in Figure 2.

............ : ' _ ..... :

----.--o--.--- sfact = 1.01

sfaet = 1.0001 :
•-----o-----.sfact.l.000001 • ! • - : . . i .

!

- : : ......... : ......... :

, , I i i I I J = L , I t * , I

0.00000 0.00010 0.00020 0.00030 0.00040 0.00050 0.00060

y/L

Figure 2: Grid Point Distribution for Varying Stretching Factor.

If the stretching factor is changed from 1.01 to 1.0001, it effectively puts 21 grid points

ll



closeto the wall ascomparedto only 2 for the 1.01casefor the sameflowfield height.

The stretchingfactor is calculatedat eachstreamwiselocation to maintainboundary-

layer resolutionin the laminar-viscoussub-layerasthecodemarchesdownstreamfor the

fully-griddedCFD computations.They+ locationof thefirst grid point off the wall (user

specifiedprior to compilationof the code) typically hasa valueof y+_<1-2 to resolve

the laminar-viscoussub-layerfor turbulent flows.

The second-orderaccurate,two-stage(i.e. predictor-corrector),explicit, upwind

schemeusedby Korte to solve the PNS equationsis:

Stage1:

Stage2:

where

E* = E* - _/' ij,½ -/_ ij_½ +
j -./

t, vj) __.(_,C,I.,), nL P (.; .;-1)

(_/_,) n-t-lj Y)II(_ )p (@)r, (--j _ wc-p)is__
= E* + E* - F_÷ - 1s +

- j J

- v., )+(G(_..L)j+\j ,]j

T,,, 7/":L," + -- '= -y ',,j j-,,,

(25)

(26)

(27)

E°]0 , (28)
0

and the superscript n represents the values at a known flowfield plane, p represents the

predictor stage values, and n+l represents the unknown flowfield plane to be determined.

Basically, Stage 1 calculates the p values using the n values, then the p and n values

are used to calculate the n+l values in Stage 2. The prime denotes viscous stress and
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heat fluxes to be differentiated with respect to the r/-direction. The GCL parameter is

the Geometric Conservation Law term defined as,

where

(GCL)? = E;'_[ (@)n+13" + E; 1.',-2-:j+1- ',-)-:iJ

: n]
+r; [_7:j÷1- _7:jJ

(29)

r r/g- n+l n+l]

(30)

E _ = Ei - E'.

(31)

F'= Zq-r'

The upwind flux approximations are obtained using Roe's flux-difference splitting method

by either splitting the flux vectors or flux differences based on the sign of the eigenvalue

(or wave speed). Roe's method has been modified for the PNS equations by Korte [9].

Note that there was no modification to the integration scheme developed by Korte for

this research.

1.5 Implementation of the Defect Wall-Function Method

Explicit finite-difference solution methods have a more stringent stability constraint

(i.e. the CFL number) than implicit methods, restricting the step size; therefore a wall-

function method is implemented to increase the integration step size. The implementation

of the wall-function method dramatically reduces the computational time requirements
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of the CFD code, since the grid spacing is increased by eliminating the need for the y+

constraint, and consequently produces a much larger integration step size.

The Barnwell and Wahls wall-function method is implemented in the Korte finite-

difference PNS CFD code to analytically calculate the wall shear stress and to determine

consistent slip-wail boundary conditions for utilization in the PNS CFD code. The

finite-difference code with no-slip boundary conditions is employed for the first few

computational planes (user specified) in order to generate initial data for the application

of the wall-function method. As the PNS CFD codes marches, the previous computational

plane is used as the initial solution for the predictor stage (and the solution for the predictor

stage is the initial solution for the corrector stage), consistent with the computational

algorithm. The wall-function methodology in the modified finite-difference code is used

exclusively to advance the spatial marching procedure.

The Barnwell and Wahls wall-function method was originally developed using the

Clauser turbulence model (characterizing the outer portion of the boundary layer). The

PNS CFD code uses a Baldwin-Lomax turbulence model for the outer portion of the

boundary layer. Hence, the Barnwell and Wahls wall-function method was modified

in this research to utilize the Baldwin-Lomax turbulence model. This is discussed in

Section 2.1. In this research, the freestream conditions (imposed upon the grid point at

the outer edge of the computational domain and denoted with the subscript cx_) are used

to approximate the boundary-layer edge conditions. Note that this assumption is exact,

except for the non-zero pressure gradient cases which are detailed in Section 4.3.

The first grid point off the wall is placed at some percentage of the match point
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location, as specified by the user and the remaining grid point locations are generated

according to the original stretching algorithm developed by Korte [9]. A discussion of

this is in Section 3.2. Since the computed flow between the match point and the wall is

just an extension of the outer layer to the wall in the Barnwell and Wahls wall-function

method, the outer-layer turbulence model is applied all the way to the wall.

An "analytical grid", a collection of discrete y-locations (not related to the numerical

grid), is generated within the boundary layer and allows the calculation of the vorticity

distribution using the analytic-velocity formulations (the vorticity is required by the

Vorticity is a function of the y-location and isBaldwin-Lomax turbulence model).

approximated by,

_)tt

_ O---Td_d , (32)

(in this research) for two-dimensional flat plate flows. The analytic-grid has adequate

resolution in the boundary layer to calculate a reasonably accurate vorticity distribution,

thus allowing for the utilization of a sparser numerical grid. This is discussed in

Section 3.3.

The integration scheme of PNS CFD code was verified using laminar flat plate

test cases. The results of these test cases compared well to the theoretical analysis

of Crocco [11] and confirm that the code is functioning properly for laminar flow. These

results are presented in Section 4.1. The CFD code was modified to incorporate the

wall-function methodology and then tested at several different Mach numbers employing

turbulent flow conditions using both zero and non-zero streamwise pressure gradient
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cases. The modified code produces results more efficiently than the fully-gridded CFD

code. An order of magnitude increase in speed was obtained for an adiabatic Mach-2 flat

plate case with only a 15% difference in the calculation of the wall shear stress (compared

to the fully-gridded CFD solution). The modified code has also been shown to calculate

with moderate accuracy, the boundary-layer profiles (velocity, temperature, and density).

Additionally, the conservation of mass, momentum, and energy was checked and found to

be reasonable for both the fully-gridded CFD case and the wall-function method. These

results are presented in Section 4.2.

The slip-wall velocity and density, the latter based on the empirical formula of

Crocco [3], numerically produces a small non-physical streamwise mass flux at the

wall. The implications of this inherent property of the Barnwell and Wahls wall-function

formulation were not fully addressed in this research, but rather the implementation of

this methodology in a practical computational scheme.

The implementation of the Barnwell and Wahls wall-function method has been

proposed to relax the grid resolution constraint for analysis of turbulent fluid flows within

the Korte PNS CFD code. The concept of wall-functions has been introduced as well as

the basic ideas of the Barnwell and Wahls wall-function method. The PNS CFD space-

marching code, developed by Korte, has also been introduced in order to understand some

of the concepts dealt with in this research, such as the predictor-corrector integration

stages and the computational gridding scheme. Also included was a discussion of the

modifications required to apply the wall-function theory to the PNS CFD code. The

subsequent text presents a detailed description of the Barnwell and Wahls wall-function
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methodand the modificationsto the methodrequiredfor adaptationto the Korte PNS

CFD code.Also includedis a discussionof themodificationsto the CFD coderequired

in order to implementthe wall-functionmethod.Resultsfrom the validationof thecode

for laminarand turbulentflows arepresentedaswell asthe resultsfrom the application

of the wall-function methodand thecomparisonswith thefully-griddedCFD code.
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2. DEFECT WALL-FUNCTION METHOD

The Barnwell and Wahls wall-function method has distinct advantages compared

with other wall-function methods. One pertinent advantage is the development of an

equation to specify the location of the match point at each streamwise location. Another

advantage is the use of analytic-velocity functions enabling the direct calculation of the

wall shear stress and the corresponding slip-boundary conditions employed by the PNS

CFD code to numerically calculate the entire flowfield to the wall. This method ultimately

relaxes the grid resolution constraint (compared with fully-gridded numerical schemes),

thus allowing larger integration step sizes to be employed. A discussion of the relevant

Barnwell and Wahls wall-function theory is presented in this section.

2.1 Turbulence Models and Match Point Equation

Barnwell and Wahls [3] derived the match point equation by equating the inner

and outer-layer turbulent eddy-viscosity models. The derivation of this equation used

a Prandtl/Van Driest turbulent eddy-viscosity model for the inner region [10, 12] and a

Clauser turbulent eddy-viscosity model for the outer region [3]. However, the original

PNS CFD code employs a Baldwin-Lomax [10] turbulent eddy-viscosity model for the

outer layer, thus the match point equation was rederived for this research using this

turbulence model. Presented in the following text is a discussion of all the relevant

turbulence models.
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a) Prandtl/Van Driest Inner-Layer Turbulence Model

Prandtl derived a mixing-length formulation based on a simple physical model of

the turbulent shear stress,

12 O'u OU
rt = -pu'v' = p _ -_g , (33)

where u t and v _ are the time-averaged velocity fluctuations and l is the mixing-length

parameter [121. The mixing length is analogous to the mean free path between molecules

of a gas; Schetz has said, "[the mixing length] is taken as some effective interaction

distance, except that it is between eddies rather than molecules" [ 12]. Van Driest derived

a mixing-length model for the inner portion of the boundary layer (the laminar-viscous

sub-layer, the buffer zone, and the law-of-the-wall region) and is defined as,

I = h-y l-exp _ , (34)

where the constant A + is equal to 26 as suggested by reference [10] and the von Karman

constant, _, has a value of 0.41, as suggested by reference [4]. A predicted velocity

profile for a turbulent boundary layer using the Van Driest mixing-length turbulence

model for the inner region is presented in Figure 3, taken from reference [12].
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Figure 3: Inner-Layer Velocity Computed Using Van Driest Mixing-Length Model.

The Prandtl/Van Driest mixing-length turbulence model [10] defines the turbulent inner-

layer eddy viscosity as,

#t =pl _l_l , (35)

where the magnitude of the vorticity is:

, (36)

for three-dimensional flows.

b) Clauser Outer-Layer Turbulence Model

Clauser developed an outer-layer turbulence model based on an eddy-viscosity model

derived from a generalized defect-law formulation [12] presented in Figure 4, detailing
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severaltransformedvelocity profiles (presentedin Figure5).
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Figure 4: Defect-Law Formulation.

The turbulent transport coefficient for the model is assumed to be constant across the

outer region,

t't = #,(:r) :fi f(y) , (37)

and the turbulent velocity profile typically intersects the wall at a non-zero value [12]

as shown in Figure 5.
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Figure 5: Clauser Velocity Profiles with Non-Zero Wall Velocities.

Clauser proposed employing a pseudo-laminar (i.e. constant turbulent eddy viscosity)

outer boundary layer model and from this derived an equation of the same form as

Blasius' laminar fiat plate solution, which (when properly transformed, collapses all the

data sets onto a single curve, as previously presented in Figure 4.

Also, on dimensional grounds. Clauser proposed a turbulence model,

ttt oc density * velocity * length , (38)

where the characteristic velocity was chosen as the shear-stress velocity and the char-

acteristic length was chosen as the integral thickness, Ai [12], based on the defect-law

formulation,

A__t, = Uoo
5 Jo zu,u(Y)d(_ ) , (39,
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where U_ is the freestream velocity and `5 is the boundary-layer thickness.

turbulence model is:

Hence, the

t_t = kpu* Ai , (40)

where

and

* x/f_' (41)
V Pw

A i = ,5 (42)

The outer viscosity model developed by Clauser is presented in equation (43), where the

Clauser constant, k, is typically set to 0.0168 as suggested by reference [10],

tzt = k p 5% b_ , (43)

where `5_ is the incompressible boundary-layer displacement thickness parameter, defined

as,

6i = 1 Uo_ ]

This turbulence model was utilized in the original development of the Barnwell and

Wahls wall-function method.

c) Baldwin-Lomax Outer-Layer Turbulence Model

The finite-difference computational code developed by Korte employs the Baldwin-

Lomax [10] turbulence model for the outer-layer turbulent eddy viscosity. The Baldwin-

Lomax model,

#t = k p Ccp Fwal,.e Fkleb(y) , (45)
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replacesthe Clausermodel in the outer layer for this research. Both modelshave a

similar form and yield identical t_t values if/_r_6_ is replaced by CcpFwakeFkleb(Y). The

parameters used in the Baldwin-Lomax turbulence model are:

y ..... F,,,,,_ }

OF

ry_ax

(46)

{ [ }Fmaz = max F(y) = yl,.v[ I--ex 1) : 0 <y < (47)

where the variable Ymax is the y value where F(y) is a maximum (i.e. Fmax),

udif = (_/u" +v" +w"),,,,,_ -(_/u _ +v 2 +w 2)_i. ' (48)

and

[ / -'Fkhb(9) = I + 5.5 C_t,t,!l (49)
9,,,,x /

The Fmeb parameter is the Klebanoff intermittency factor characterized as the fraction

of time that a flow is locally turbulent. Thus, this factor causes the Baldwin-Lomax

model to yield turbulent viscosity values tending toward zero far from the wall. The

coefficients employed in the Baldwin-Lomax turbulence model are listed in Table 1 as

recommended by reference [101.

Table 1: Coefficients for the Baldwin-Lomax Turbulence Model.

A ÷ Ccp Cklcb Cwk k

26.0 1.6 0.3 0.25 0.0168
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d) Derivation of Match Point Equation

The match point equation originally developed by Barnwell [3] is derived by equating

the Prandtl/Van Driest inner-layer turbulence model, equation (35), with the Clauser

outer-layer turbulence model, equation (43),

• 12kpU_, = p I_[ (50)

and outer-layer models.

in the subsequent text.

is approximated by,

The match point equation is used to determine the transition y-location between the inner

The derivation of the Barnwell match point equation follows

For two-dimensional flat plates, the magnitude of the vorticity

0 It

I_1 _ .,-- , (51)
yo

and is calculated using the analytic-velocity profile from the law-of-the-wall (g(y+),

equation (76)) and law-of-the-wake (h(y+), equation (77)) formulation,

: _,*[_(y+)+ h(y+)] (5z)

The mixing-length parameter, I, is approximated by, _y, where t¢ is the von Karman

constant, hence,

kpu_6: : p(_-;_)_{,, [_(y+)+h(u+)]}
u.9

(53)

The shear-stress velocity is a constant with respect to y, thus the equation reduces to

the following form,
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0h(y+)]OY(Y+ ) + (54)

o---T- N J

The law-of-the-wall and law-of-the-wake advocated by Barnwell and Wahls are substi-

tuted into the equation, yielding,

0 [l{sin[u(llny +kpU_5* = p(ny)2u* {-_g +b)]+

R(1-c°s[u(llny++b)])}] +_[ 6W(' \p_U_'*''_' )2(Y+)2]}

(55)

(note: the wall-function parameters, R, W, 5',, and i., are discussed later, in detail,

following the match point equation derivation). The transformation from y+ coordinates

to y coordinates is governed by,

y _ #u, y+ (56)
A p,,,U_6_

where A is the boundary-layer thickness parameter. After taking the spatial derivatives,

the following equation results,

kpU_,_ : p(_y)_u*{[l{coslu(llny++b)]_y+

R(sin [v(llny + q--b)] h.'_y)}]--I-[_.2W_-ff] }

(57)
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The transformationfrom y coordinatesto q coordinatesis governedby,

(58)
0 = S ,

thus,

R

+

(59)

Barnwell defines a parameter, _'u,f, such that,

(60)

where _; is

Barnwell [31),

the density-weighted velocity thickness

<5,*= fo _ P(q)(lpoc u(Y))dfLloo

An alternate form for 8,; is presented as,

parameter (as defined by

(61)

,5,, , (62)
U_

and is substituted into equation (60) to yield,

U_6_ (63)
CJwf -- tl, ./././_

Further substitution employing equation (59) yields the Barnwell and Wahls match point

equation:
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R

,2,V, 3+

(sin }  w:k

+

-0

(64)

This equation has three roots, but only one root is both positive and real. Solving this

equation yields the match point location in the f/ coordinate system. In y÷ space, the

match point location is designated as ym ÷, with typical values being on the order of

10-1000 for the test cases of this investigation.

The wall-function parameters used in the match point equation are:

W = I1 1 + 11 2 P"._.L' , (65)

\poo /

_ Ta._, p w u*poo _ '

R 1 (_-1)
2 /'r,,,

V7_ - poo

5 • 1 l/'_--l--i--i--i--l_O_0"

a .m_ 2 M e-4v l'F_

(66)

(67)

(68)

(69)

where/3 is the compressible pressure-gradient parameter defined as,

/3 = 2fl-_{l+ P--_w+(l-r)[lpoo T,,w poo p,o +0]} (70)

The incompressible pressure-gradient parameter, fl, is:

,5* dp

fl p.wu .2 dx
(71)
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The variable Taw is the adiabatic wall temperature,

,' M2; ,

(assuming a constant ratio of specific heats, 7) and r is the recovery factor given by the

empirical turbulent correlation,

1

r= Pr _ (73)

The current research utilized the Baldwin-Lomax turbulence model instead of the

Clauser turbulence model, hence the match point equation was rederived. The derivation

of the match point equation using the Baldwin-Lomax turbulence model is similar to

the derivation of the match point equation using the Clauser turbulence model. The

terms from the Clauser turbulence model,//_*, must be replaced by the terms from the

Baldwin-Lomax turbulence model, CciJ;',,,,,_,.Fktcb(y), in equation (59). The Fkleb term

is near 1.0 around the match point and thus is neglected. The governing match point

equation utilizing the Baldwin-Lomax turbulence model is:

R(sinlv(lllay+q-b)])]-k-[121VQ3]l

and upon substitution and rearrangement is:

(74)

(75)

=0
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This is thematchpoint equationemployedby themodifiedPNSCFD codeto determine

the matchpoint location.

Someexamplesof thematchpoint distributionfor the flat platetestcasesareshown

in the following figure for a rangeof Mach andReynoldsnumbers.
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Figure 6: Match Point Distribution for the Flat Plate Test Cases.

2.2 Analytic-Velocity Functions

The analytic functions employed for the inner layer are the law-of-the-wall, equation

(76), and the law-of-the-wake, equation (77). The analytic outer layer is governed by

the defect-stream function, equation (80), a measure of the deficiency of the outer-layer

velocity (compared to the freestream velocity). The law-of-the-wake formulation in the

Barnwell and Wahls wall-function approach was only developed for the inner layer to
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extend the inner layer into the inner portion of the outer layer. Thus, two functions

characterizethe inner layer, whereasonly the defect-streamfunction characterizesthe

outer layer.

a) Inner-Layer Function: Law-of-the-Wall

The law-of-the-wall describes the logarithmic behavior of the turbulent velocity

profile in the inner portion of the boundary layer. This well-known formula is used

as part of the analytic inner-layer solution in the wall shear stress calculation. Examples

of the compressible law-of-the-wall formulation and a typical turbulent CFD velocity

profile are presented in Figure 7.
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. _-- - - Law-of-the-wall .
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Figure 7: Law-of-the-Wall Velocity Profile.

The region from y+ of 30 to 6000 is the logarithmic region and is modeled by the

law-of-the-wall, equation (76).
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The form of the law-of-the-wall utilized by Barnwell and Wahls [3] for compressible,

non-adiabatic flows is:

Law-of-the-wall:

(76)

The variables x and b are set at 0.41 and 4.9, respectively as suggested by Barnwell [4].

b) Inner-Layer Function: Law-of-the-Wake

The law-of-the-wake has been utilized in this wall-function method for two reasons.

First of all, the law-of-the-wake allows the effects of the streamwise pressure gradient

to influence the inner region of the boundary layer. Secondly, the law-of-the-wake

analytically extends the law-of-the-wall region, thereby increasing the distance between

the wall and the match point [3]. The law-of-the-wake developed by Barnwell and Wahls

is only applied to the inner region of the boundary layer and has the following form,

Law-of-the-wake:

6W (, 'uwY + )2h(Y+) = -_ \pwU_"_6* (77)

c) Outer-Layer Function: Defect-Stream Function

The defect-stream function formulation determines the outer analytic-velocity profile,

The general definition for the defect-stream function, developed by Clauser [7], in the
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transformednormalcoordinatesystem,q, is:

Of u('l) - U_o

071 u*
(78)

The 77 coordinate is defined by the equation,

1 fo u p(y) dy (79)71 = --A Poo

Additionally, the solution developed by Barnwell [3] for the defect-stream function

at the match point is:

0,1 {0"-'_1 m = --c¢-N"_ ,a, , ('1-7+ M a 2,2,Nm
_/(.- _)_,z, I"(1+.)

({l'" - q"') M(a 3 Nm) }
g.O,_l ]¢

(80)

The wall-function parameter, a, is defined as,

.=_ 1+ el?- 1+
(81)

and the transformed coordinate 0 is:

-- f , y (82)
V poo tl.,t oo6v

The functions F and M are the Gamma and the Kummer functions, respectively. The

Gamma function is a generalized factorial function [13]. The Kummer function has the

following Taylor series expansion,

a V a(a + 1) N" a(a + 1)(a + 2) N 3
M(.,_,S) = 1+]_ +_(_+_).2! +t,(_+_)(_+2) 3! +"" (83)

The other parameters in equation (80) are:

-1

V/(.,- })_.,_,,,_k,i_(l + ")oo,:_t + .,-_,N.,
(84)
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xw - a + , (85)
_'.,f k 2

Ow 1 + 23 ' (86)

= 1 + T---_- - - p_ / U¢¢ ' (87)

^ ~ '3'

N,,_ - 1 + 2/3 (0,,, - 'l,,,)" (88)
_'wf k" 2 '

(note: 7),,, is not _) evaluated at the wall. but _,,, denotes 7) evaluated at the match point).

These variables are utilized in the defect-stream function to calculate the outer analytic

velocity at the match point and the match point velocity is then utilized to calculate the

wall shear stress.

2.3 Wall Shear Stress

Once the match point location is determined and the velocity functions are evaluated

at the match point, the wall shear stress is calculated. The analytic velocities for the

inner layer and the outer layer are calculated at the match point using the following

relationships:

Inner layer formulation:

_,,, = _*[.(:_t +) + h(.+)] , (89)

Outer layer formulation:

(_J" 711.,,, = _r +.*_ , (90)

where u* is the shear-stress velocity, g is the law-of-the-wall, h is the law-of-the-wake.

and _ is the defect-stream function. The two match point velocity formulations are
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equated,

* -t-u [.(y,,,)+ = U_+u*Of I"g_TJm

and the shear-stress velocity is solved for, yielding,

, (91)

, _ Uoc

u -- {g(y+) + h(Y +) _ (pp.._,)_ _0 Im} ' (92)

where the density ratios in the denominator result from the coordinate transformation

from r/to r_. The shear-stress velocity determines the wall shear stress via the definition,

_2

rw =- p.,u , (93)

thus the wall shear stress is analytically calculated without having to numerically resolve

the laminar-viscous sub-layer.

2.4 Slip-Wall Boundary Conditions

The wall shear stress is calculated analytically using the wall-function method and

the velocity gradient at the wall is calculated from,

OiL Ir.w - (t't + #t) _ w ' (94)

where #t is calculated from Sutherland's law, equation (21), and #t is calculated from

the outer-layer turbulence model, the Baldwin-Lomax model, equation (45). Rearranging

yields,

Ot_ t ru, (95)
Oy u, /tl + jtt
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Utilizing the Baldwin-Lomax turbulent eddy-viscosity model and the definition of shear-

stress velocity, results in the relationship,

O_L ] = pu,_t *_Oy ,w #t + kpsCcpFw.ke ' (96)

where the Fkleb parameter is approximately 1.0 near the wall. The parameter ps is the

slip-wall density and is calculated from equation (99). A first order finite-difference

extrapolation of the velocity gradient is used to calculate the slip-wall velocity. The

velocity at the first grid point off the walt and the velocity gradient are used to determine

the slip-wall velocity boundary condition using,

0. Ius = rU(2) -- [9(2) -- y(1)] _ W ' (97)

where u(2) and y(2) are values at the first grid point off the wall and y(1) is the

normal coordinate of the wall. The normal-wall velocity is zero, consistent with no fluid

penetrating the solid surface. Hence, the wall-function velocity boundary conditions for

the wall are:

.(1) = ._ ¢ 0

(98)

.,,(1) = 0

Note that the normal velocity boundary condition on the upper surface (denoted as oe)

is set to zero (i.e. a streamline) for the test cases examined in this research.

Along with calculating a slip-wall velocity, a slip-wall density must be calculated

to be consistent with the slip velocity. The slip-wall density is derivable from Crocco's

theorem, yielding,

P8
p., 7'., T.,

:c,,,

(99)
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wherethe density boundarycondition is:

p(1)= p_ (1oo)

The pressure at the wall is determined by satisfying the standard pressure boundary

condition,

Op
= o (lOl)

W

The numerical boundary condition employed by the finite-difference code is:

p(1) : 21)(2) - _p(3)3 - , (102)

and was not modified for this research.

The slip-wall temperature is determined from the slip-wall density, the pressure at

the wall, and the equation of state as follows,

p(1)
Ts- p_R ' (103)

where R is the ideal gas constant,

J ft lb

R = 287 kgA" - 1716 slug*R (104)

Hence, the temperature boundary condition is:

(105)

To account for the streamwise variauon in the slip-wall density and its influence on

the turbulent viscosity, a slip-wall turbulent viscosity is calculated from the wall shear
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stress,the velocity gradientat the wall, and the laminar viscosity at the wall, in the

following manner,

7"to

tzt = #t , (106)
0_

w

where the wall shear stress and the velocity gradient have both been updated. This is

required to guarantee consistency within the wall-function method.

2.5 Integration Step Size

The integration step size is directly proportional to the minimum spacing between

the grid points in the normal direction. Having increased the minimum spacing between

two adjacent grid points by implementing the wall-function method, the step size is

proportionally increased. Some examples of step sizes for both the fully-gridded CFD

code and the wall-function method are presented in Table 2.

Table 2: Examples of Non-Dimensional Step Size Values for Turbulent Flat Plate Flow.

Test Case (_ = ½) Fully-Gridded CFD Wall-Function

Moo = 2.0 9 x 10 .8 3 x 10 .5

Moo = 5.0 1 x 10 -6 4 x 10 -5

Moo = 8.0 3 x 10 -6 1 x 10 -4

The Barnwell and Wahls wall-function method has been discussed in detail. The

match point equation was derived using the Baldwin-Lomax turbulence model consistent

with the PNS CFD code. The analytic-velocity functions were presented along with the
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procedure for calculating the wall shear stress and the relevant boundary conditions. The

effect of the wall-function method implementation on the integrated step size was also

presented.
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3. IMPLEMENTATION OF THE

DEFECT WALL-FUNCTION METHOD

The prior section discussed in general the solution process for the Barnwell and

Wahls wall-function method. The current research effort modified the Korte PNS CFD

code to utilize the Barnwell and Wahls wall-function method. Several modifications to the

PNS CFD code and the wall-function methodology were implemented to integrate the two

entities. The procedure for utilizing the wall-function method to generate numerical finite-

difference solutions is discussed in the next section along with the required modifications

to the PNS CFD code.

3.1 Procedure

The procedure for implementing the wall-function method required that the finite-

difference CFD code utilize no-slip boundary conditions for the first few solution planes

to generate initial conditions for the wall-function method, since an initial solution for

the flowfield must be known to initiate the Barnwell and Wahls wall-function method.

The initial solution must contain the streamwise velocity profile, u(y), the density profile,

p(y), and also specify the parameters,

Op and us • (107)
9m _ _t , 0X '

For the first computational plane employing the wall-function method, the values for Ym

and Us are unknown, thus the assumed values for these two quantities are the y and u
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values at the first grid point off the wall,

u(2) i = 1 (108)us, = i > 1 '"Us,_I

9(2) i = 19.,., = (109)
Y._,-1 i > 1 '

(where 'T' denotes the computational plane being calculated using the wall-function

method). Subsequent computational planes utilize the slip conditions from the previous

computational plane. The modified PNS CFD code uses the slip boundary conditions

in the same manner as the no-slip boundary conditions. Since the wall shear stress has

been calculated analytically, the first grid point off the wall is moved outward to allow

for larger grid spacing.

Several flowcharts were developed to illustrate the steps taken to implement the wall-

function methodology in the PNS CFD code. The "main program" structure is shown

in Figure 8 and is discussed in the following text (note: not all the steps/calculations

are presented in the flowcharts, just the most important ones related to the wall-function

implementation).
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)

)

)

start

call initial

Q call code

J i-_- i + 1

call step

Ix..._x.+_x.I

Q callpred )

+

+
( callcorr ._

+
ca,,co_)

J istep-_-istep + 1 I

_ yes

Figure 8: The "main program" Flowchart.

The "main program" flowchart consists of several "call" statements and an "if" statement

to either continue marching or to stop. The "call" statements for the predictor integration

step (labeled "pred") and corrector integration step (labeled "corr") are presented in the

"main program" flowchart as previously discussed in Section 1.4.

The first subroutine "called" by the "main program" is the "initial" subroutine, shown
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in Figure 9.

initial )

f read initial
low conditions /

1+1

no_
Iu'ljl'-_°I

÷
i v.ijl-.-o.oI

JP'(J) "_-

1.oJ

eqn of stateJ

( return )

Figure 9: The "initial" Subroutine Flowchart.

The "initial" subroutine "reads in" the initial values for several variables, such as the

stretching factor and the freestream conditions. The spatially uniform initial values for

all the non-dimensional flowfield v_triables are set in this subroutine (all cases examined

in this research were initialized to uniform fields).

The next subroutine "called" by the "main program" is "code". This subroutine

calculates all the flowfield variables from solutions of the PNS equations. The "boundary"
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subroutine is "called" from the "code" subroutine. The "boundary" subroutine, shown

in Figure 10, sets the boundary conditions for the flowfield variables, such as velocity,

density, pressure, and temperature.

( boundary )

ooT I v.(,i-.-o.o I

1 +
[ ,,,,/+l+-o.oJ

(oa,,wa,,ma,o)

I v.l,>+o.o 1
no

I p'(1)-.q- 2p'(2)- 1/2 p*(3)3/2

u'(1)..- o.o ]

¢

str
y*(3) - y'(2)

y'(2) - y'(1)

+
T'(1) "_-T*(2) +

|_,,,

[ p'(1)"_'--

+
Ip'l,>+_'sl

+
T*(1) _ eqn of state

T*(1 )_ Tw* I

2p'(2) - I12 p*(3) I

I3/2

,l
e+o++,eI

r

Figure 10: The "boundary" Subroutine Flowchart.
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Note the variable istep and the variable itran are used to initiate the wall-function

procedure. The variable istep is an the integer number given to each flowfield plane

and the variable itran is the integer number for the first flowfield plane employing the

wall-function slip-wall boundary conditions (typically this user specified value has been

set to 3 in this research). The steps shown on the left side of Figure 10 are for the

wall-function method implementation and the steps on the right are for the PNS CFD

code using no-slip boundary conditions. The variables u*(1) and M(1) are set in the

"wallmain" subroutine for the wall-function method.
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The next subroutine"called" by the"main program"is "step", Figure 11.

step )

_ 'es_[_""-_"'""_r''°°'
130'

I_'-'_a,,-,unc,ionI

,t t

Yi+l(1) --_t-yw

" IYi+1(2)-_-y_(2) + 0.001 [(pm)Ym" y_(2)]

_. j .it-.- 3 j>nj?_yes

_1 l,"q'-J + ln:_ /, •

Yi+l (J) "_- Yi+1(2) + [(Ymax "Yi+l (2))(1- sfact + 2 sde_" )]1

yes _,./. I \

_-_/ 1"_"1 I j>nj?NNjY es

"- J+llno_,/
I C) _Ymin+ [(Ymax" Ymin'( 1" sfact+2 _)] I

v

( return)
Figure 11" The "step" Subroutine Flowchart.

The variables y min and y max are the minimum and maximum non-dimensional y values,

respectively. The first step determines the wall shear stress from either the wall-function

calculated value or the numerically calculated value. This subroutine calculates the non-
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dimensional axial step size, dx*, between consecutive flowfield planes and also calculates

the non-dimensional y-coordinates of the grid at each new plane.

In this subroutine, the wall-function method calculates the non-dimensional y-

coordinates slightly different than the original code. The wall-function method deter-

mines the location of the first grid point off the wall, y*(2), based on a percentage, pm,

of the match point location, Y'm- Typical percentages have ranged from 5% to 100% for

this research. The other grid points are calculated using the stretching factor algorithm.

The reasoning and discussion for the changes in the "step" subroutine are presented in

Section 3.2. When using the wall-function method, the stretching factor is a constant,

chosen to keep several grid points in the boundary layer.

In the "boundary" subroutine, the wall-function method is "called" through the

subroutine "wallmain", Figure 12.

wall main )

Iaoo---- l

I l't°_ _ Cl T°°3/2 iT_+ c2

(call walJsub)

(return)

Figure 12: The "wallmain" Subroutine Flowchart.
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This subroutine calculates the freestream conditions for the speed of sound, velocity,

laminar viscosity, and density to dimensionalize the flowfield variables before utilizing

the wall-function method, which was developed for primitive (dimensional) variables.

The "wallsub" subroutine, shown in Figure 13, is "called" from "wallmain" and is

basically the Barnwell and Wahls wall-function methodology.

wall sub)

u s _ u(2) ]

calculate: --, u,_i, 6v, A, COwf, Re6" , _, _, a, rl, or, W, _, rlw, Nw, C, R
' Ps

I +
Ym _-- Re6" £]

tOwf

calculate: P_m"qm' N cqf u'm'a'_ m' gm, hm, ]

aul _- pwU*2 l

ay I w k Ps Ccp Fwake + gl(1 ) I

lus-u, , q lwl

Figure 13: Tile "wallsub" Subroutine Flowchart.
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This subroutine must assume some initial values the very first time wall-function cal-

culations are performed (i.e. jfirst=0), as discussed earlier in Section 3.1. Subsequent

calculations use the values from the previous plane (i.e. i-l) as the initial guesses. Sev-

eral wall-function variables must be calculated using the Barnwell and Wahls equations.

The variable f/ is solved for using the match point equation. After more calculations,

the velocity gradient at the wall, the slip-wall velocity, and the wall shear stress are de-

termined. The flowfield variables are returned to "wallmain" to be non-dimensionalized

and then returned to the "boundary" subroutine.

The subroutine "fwanal", shown in Figure 14, is "called" from the "eddy" subroutine,

which is "called" from the "code" subroutine, to calculate the variables Fwake and Ymax

needed by the Baldwin-Lomax turbulence model (note: when referring to the turbulence

model, Ymax refers to the y value at the maximum F value). Another modification of

the PNS CFD code required for the implementation of the wall-function methodology

is to apply the outer-layer turbulent viscosity at all grid points including those in the

inner-layer [2]. This is performed in the "eddy" subroutine.
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Figure 14: The "fwanal" Subroutine Flowchart.

This subroutine calculates an analytical grid (labeled "Yah"). Using this analytical grid,
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"fwanal" calculates the streamwise analytic-velocity profile using the analytic functions,

which in turn is used to calculate the vorticity distribution in the boundary layer. The

vorticity is used to calculate the F(y) function, which determines the Fmax and Ymax

needed to calculate the Fw,,tke parameter. This procedure compensates for the lack of

resolution in the numerical CFD grid and was found to yield reasonable results. Further

discussion of the implementation of the "fwanal" subroutine and the relevant changes to

the wall-function equations is presented in Section 3.3.

3.2 Defect Wall-Function Gridding Scheme

After the wall-function method was implemented, the original gridding scheme was

altered. The numerical grid is developed based on the location of the match point. The

match point location is calculated in the "wallsub" subroutine and then the first grid point

off the wall is chosen based on a user specified percentage of the match point location,

pro, in the "step" subroutine. Moving the first grid point closer to the wall allows for

more grid points to lie within the boundary layer. Once the first grid point off the wall

is determined, the remaining grid points are controlled by the stretching factor algorithm.

Although no comprehensive sensitivity study was performed, typical values for the pm

parameter and the sfact parameter, that yielded reasonable results, are 0.50 and 1.005,

respectively. It is important to note that the sfact parameter is critical, since the minimum

grid spacing controls the integration step size and thus net computational time.
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3.3 Modified Turbulence Modeling for Defect Wall-Function Method

Since the numerical grid resolution is reduced in the boundary layer by moving grid

points farther from the wall, the vorticity for the turbulence model may not be adequately

specified. To address this issue, an analytical grid is established on which an analytical

vorticity distribution is calculated. From this data, an analytical Fwake and ymax are

calculated for the Baldwin-Lomax turbulence model.

A semi-uniform analytic-grid is generated with the first analytic-grid point off the wall

located at a y+ of 1.0 and a uniform y+ analytic-grid spacing from that point outward

(typical grid spacings have ranged from 5-20 in this research). The velocity for the

analytic-grid points below the match point is determined from the law-of-the-wall and

law-of-the-wake. The changes to the relevant wall-function equations are:

where

+ [_,,,,(y,+,,)+ h°.O+,)] ,_.,,(_,,,,)= _,* (110)

9°"(Y"")= 7
(111)

b]})],
,)

6 IV 7 * (112)

and the subscript "an" denotes an analytic-grid calculation. The analytical velocity for the

analytic-grid points above the match point is determined from the defect-stream function

formulation. The equations are:

, p_ P/-_, Of a,_u,,,, (y,,.+,) = Uo_ +u " (113)
p,,,,O,+,)v p_ o_ '
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where

u,,,, ,,,iy _ (114)¢,,,(,j,,+,)=
H e,5.

xo,, 1 + __ (0,,,, - ;_w)"_ , (115)

of = -c_-N .... X/(" _}_,,_. r(l+,_) _t a ,_,2,A_.
00 ,_,_ - ' - (116)

(')"" - ')"')M a N,,.
_.,o.i/¢ '_' ,

and pan is the analytically calculated density and is determined from the following

equation, developed by Barnwell and Wahls [4], as a function of the defect-stream

function,

P_ , (117)

(
where the transformation between the _/-defect-stream function and 0-defect-stream func-

tion is:

O_..f.f,,, _ p_ _ Of ,,, (118)0,/ - p.,,(:,_,+,)V_'_ 0,>

Once the transformation is used, equation (117) becomes a quadratic in pa,. This

quadratic is solved and the largest rc×_t corresponds to the density profile. (empirically

verified by comparison with the density protiles generated employing the fully-gridded

CFD code). Once the analytic-velocity profile is established, the analytic vorticity is

calculated and the Fw.,_e and ym,,x quantities for the Baldwin-Lomax turbulence model

are determined. This analytical calculation of the Baldwin-Lomax parameters allows for

a more accurate calculation of the outer-layer turbulent eddy viscosity, since there are

fewer numerical grid points in the boundary layer when implementing the wall-function

method.
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The procedure for implementing the Barnwell and Wahls wall-function method has

been discussed (graphically illustrated in the flowcharts) as well as the modifications to the

PNS CFD code. The numerical grid generating scheme was altered to take advantage of

the wall-function implementation allowing larger grid spacing. The analytical calculation

of the parameters for the outer-layer turbulent eddy-viscosity model was discussed.

As shall be seen, all of these modifications allowed the PNS CFD code to generate

engineering accurate results very quickly as compared to the fully-gridded CFD code.
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4. RESULTS

The PNS CFD code has been modified to incorporate the Barnwell and Wahls wall-

function method. The PNS CFD code was validated using laminar flow conditions on a

fiat plate (zero streamwise pressure gradient) to ensure the code was functioning properly

with respect to theoretical velocity and temperature profiles and by checking conservation

of mass, momentum, and energy. Several turbulent fiat plate (zero streamwise pressure

gradient) test cases were also investigated, utilizing both the wall-function methodology

and the fully-gridded methodology (resolved laminar-viscous sub-layer). The resulting

solutions were compared between these two methods and also to theoretical distributions

of the wall shear stress and experimental data for the velocity profile to validate both

methods. Non-zero streamwise pressure gradient cases were also investigated.

4.1 Laminar Flat Plate Flow (Zero Pressure Gradient)

a) Velocity and Temperature Profiles

The PNS CFD code was evaluated with a laminar-viscous formulation to ensure that

there were no errors in its implementation (without the complicated issues of turbulence

modeling). The evaluation involved a comparison with laminar boundary-layer profiles

for fiat plate flow developed by Crocco [11]. Crocco's exact solutions for laminar,

adiabatic flat plate flow use a line,u" viscosity law (,_, = 1) and a Prandtl number of 1.0.

The parameter _ is utilized in the following manner,

t l "/'
'' _l I ( _ ) (119)
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Crocco's laminar solutions are plotted in Figures 15 and 16 for several Mach numbers.

These graphs are obtained from Schlichting, reference [11].
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Figure 15: Theoretical Velocity Profiles for Laminar Flat Plate Flow.
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Figure 16: Theoretical Temperature Profiles for Laminar Flat Plate Flow.

The CFD code was tested with flat plate flow at two different Mach numbers. The
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domain for the computations is:

0<--<1
-- L -

0<_<1.2
-- L -

The boundary conditions for the CFD code are listed below,

tt(1) -----0

(120)

..(,,j) = u_

_(1) = o

t,(_j) = 0

T(,_j) = 7_ (121)

p(,_j) = p(,,j) I_ T(nj)

_(l)
p(1) -

1_T(1)

r'("J) = r,o_

nj = 121 ,

where the parameter nj is the number of y-grid points in the computational field. The

pressure boundary condition at the wall is calculated so that the following relation is

satisfied,

Op ,,,0y = 0 (122)

The temperature boundary conditions for the wall are:

Adiabatic wall:

Pseudo-adiabatic wall:

Oy = 0 (123)

2'(1) =7_.,, (124)
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Pseudo-adiabatic denotes that the wall temperature is set to be the adiabatic wall temper-

ature computed by equation (72), whereas adiabatic denotes that the temperature gradient

at the wall is explicitly zero. Cases A-1 and A-2 have a freestream Mach number of 2.0,

while cases B-1 and B-2 have a freestream Mach number of 5.0. Cases A-1 and B-1

used an adiabatic wall temperature boundary condition and cases A-2 and B-2 used a

pseudo-adiabatic wall temperature boundary condition. The other inflow conditions are

listed in Table 3.

Table 3: Laminar Flat Plate Inflow Conditions.

Parameter Case A-1 Case A-2 Case B-I Case B-2

Moe 2.0 2.0 5.0 5.0

1.5 x 106ReL 1.5 x 106 1.5 x 106 1.5 x 106

Toe 222.0 K 222.0 K 222.0 K 222.0 K

Tw 399.6 K 399.6 K 1332.0 K 1332.0 K

Pr 1.0 1.0 1.0 1.0

w 1.0 1.0 1.0 1.0

L (length) 1.0 m 1.0 m 1.0 m 1.0 m

Temp B.C. adiabatic pseudo-adiab, adiabatic pseudo-adiab.

Temp B.C. T(1) = T,,wOT= 0 T(1)= Taw
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The velocity profiles for cases A-1 and A-2 are presented in Figure 17.

1.00
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Figure 17: Laminar, Velocity Profiles (Case A).

Three velocity curves are presented in Figure 17. One curve represents Crocco theory.

The other two curves are calculated using the PNS CFD code. One uses an adiabatic

wall temperature boundary condition, whereas the other uses a pseudo-adiabatic wall

temperature boundary condition. The CFD code uses equation (125) to numerically

calculate the non-dimensional adiabatic wall temperature boundary condition, T*(1),

T*(1) = T*(2) + [T*(2) - T*(3)] (125)
[._.(3)-_.(2)],1"9 [y.(3)-y.(__.}]
y.(2)-_.(1)]I," -I- [y*(2)-y'(1)] }

This equation numerically approximates equation (123). The third curve uses a pseudo-

adiabatic wall temperature boundary condition, equation (124). The two CFD curves

compare well with the theory of Crocco. The maximum percent error between the CFD

curves and the theory occurs around 7/=5 and is only 2.3%. Percent error is defined in
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the following manner,

%Err = ttlhc°rY -- ttCFD

tttheory

(126)

The temperature profiles for cases A-1 and A-2 are presented in Figure 18.
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Figure 18: Laminar, Temperature Profiles (Case A).

The adiabatic boundary condition does not predict the correct adiabatic wall temperature,

calculated using equation (72). For case A, the non-dimensional adiabatic wall temper-

ature, -_', is 1.8. The pseudo-adiabatic boundary condition closely approximates the

adiabatic wall temperature boundary condition given by equation (123) by producing a

near zero temperature gradient at the wall. The use of the numerical adiabatic boundary

condition, equation (125), results in a percent difference of 0.03% between the wall tem-

perature (point 1) and the first point off the wall (point 2). Using the pseudo-adiabatic

boundary condition also gives a percent difference of 0.03% between the two correspond-

ing points. This implies that the pseudo-adiabatic boundary condition approximates the
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adiabaticboundarycondition. Percentdifferenceis definedas,

%Diff = T(1) - T(2) (127)
T(1)

The two CFD curves closely approximate Crocco theory. The maximum percent error

between the CFD curves and the theory occurs around 77=6 and is 3.7%.

The velocity profiles for cases B-1 and B-2 are presented in Figure 19.
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Figure 19: Laminar, Velocity Profiles (Case B).

The CFD code closely models Crocco theory. The percent error between the pseudo-

adiabatic CFD curve and the theory is a maximum around q=15 and is 3.2%. There is

more separation between the adiabatic and pseudo-adiabatic curves between q=13 and

77=16 in case B than for case A, but both curves are close to Crocco theory.
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The temperature profiles for cases B-1 and B-2 are presented in Figure 20.
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Figure 20: Laminar, Temperature Profiles (Case B).

Using the numerical adiabatic boundary condition, equation (125), results in a percent

difference of 0.2% between the wall temperature (point 1) and the first point off the wall

(point 2). Using the pseudo-adiabatic boundary condition also gives a percent difference

of 0.2% between corresponding points, implying an adequate adiabatic boundary con-

dition. The pseudo-adiabatic boundary condition models Crocco theory closer than the

adiabatic boundary condition from z/=0 to 7/=13. The maximum percent error between

the pseudo-adiabatic curve and the theory occurs around 77=15 and is 32.0%. This latter

error could be reduced via grid resolution, but this effort was deemed unimportant for

this study.
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b) Conservation Laws

To ensure that the code is functioning properly with respect to conservation of mass,

momentum, and energy, these quantities were investigated for the laminar cases. The

conservation of mass is given in the following equation, the mass flow rate per unit width,

7_ /Y .....-- = p(g)u(y) dy , (128)
W dO

where rh is the mass flow rate, w is the width, and Ymax is the y-location of the outer

boundary (which is a stream surface). For the two-dimensional cases dealt with in this

research, w is 1.0. The non-dimensional mass flow rate is given in the following equation,

J 0 PoC, [-/'oo '

where the * represents a non-dimensional quantity and L is the characteristic length of

the flat plate. The non-dimensional mass flow rate was calculated and found to be a

constant in all four cases and approximately equal to 1.2 across the entire length of the

flat plate, implying that mass is conserved. The non-dimensional mass flow rate for the

entire flowfield and the boundary layer at the trailing edge (i.e. x=l.0 m) are shown

in the following table, as well as the percentage of the entire flowfield non-dimensional

mass flow rate in the boundary layer.

Table 4: Non-Dimensional Mass Flow Rates at Trailing Edge.

Test Case Entire Flowfield Boundary Layer % of Entire Field

Case A- 1 1.200 0.085 7.08%

Case A-2 1.200 0.085 7.08%

Case B- 1 1.200 0.233 19.4%

Case B-2 1.200 0.235 19.6%
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The percent error between the non-dimensional mass flow rate at the leading edge (x=0.0

m) and the trailing edge is presented in Table 5 for all cases. Percent error is defined as,

7"* - 0%Err = 7_=1 =
liZ_=l (130)

Table 5: Percent Errors for Non-Dimensional Mass Flow Rate.

Test Case Percent Error for 0.0<_<1.0

Case A- 1 0.001%

Case A-2 0.001%

Case B- 1 0.001%

Case B-2 0.001%

The small percent errors imply that the non-dimensional mass flow rate is constant,

thus mass is conserved.

The conservation of momentum using the stream thrust approach is presented below.

Momentum is conserved if the following condition is met,

_1;'* = D/'ag , (131)

where

and

/d:t+ 1D;'_Lg = r., d.t" , (132)

, = r,,, (133)
r., [)oc_'£

The stream thrust per unit width is:

F fY"-_m

tu JO
I,(y) ,l,/ + f" ......

JO
p(_g)[u(y)] e dy , (134)
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where F is the stream thrust. The non-dimensional stream thrust is given below,

' ....Jo
(135)

The non-dimensional stream thrust and drag for cases A and B are given in Figures 21,

22, 23, and 24.
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Figure 21" Conservation of Momentum (Case A-I).
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Figure 23: Conservation of Momentum (Case B-I).
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Figure 24: Conservation of Momentum (Case B-2).

The change in stream thrust between two streamwise locations and the drag on the surface

between those streamwise locations are approximately equal for all four cases and differ

by less than 7% across the entire length of the fiat plate, implying that momentum is

conserved. The maximum percent error between the curves over the length of the flat

plate and the percent error at the trailing edge for all cases are given in Table 6.

Table 6: Percent Errors for Non-Dimensional Stream Thrust Approach.

Test Case Maximum % Error % Error at _7=1.0

Case A-1 6,49% at _=0.06 5.52%

Case A-2 6.45% at _-=0.06 5.52%

Case B-1 6.52% at _=0.12 4.45%

Case B-2 6.60% at _=0.47 4.21%

The conservation of momentum is also checked using the momentum integral equa-
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tion for two-dimensionalcompressibleflow over a flat plate as,

AO c f Tw

Ax 2 p_ U'_
, (136)

where 0 is the momentum thickness,

[ p(y)u(y)
0 = _'_"_ 1 dy , (137)

Jo p_U_ U_ J

and c/is the coefficient of friction. The non-dimensional momentum integral equation is:

A0
* (138)-- T,wAx

The results from the non-dimensional momentum integral equation for cases A and B

are given in Figures 25, 26, 27, and 28.
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Figure 25: Conservation of Momentum (Case A-I).
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Figure 26: Conservation of Momentum (Case A-2).
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Figure 27: Conservation of Momentum (Case B-l).
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Figure 28: Conservation of Momentum (Case B-2).

The change in momentum thickness between two streamwise locations and the non-

dimensional wall shear stress on the surface between those streamwise locations is

presented in the four graphs and differs by less than 10% across the flat plate for _7>0.06

for case A and for _7>0.18 for case B, implying that momentum is conserved in these

regions. The maximum percent error between the curves over the fiat plate and the

percent error at the trailing edge for all cases are given in Table 7.

Table 7: Percent Errors for Momentum Integral Equation Approach.

Test Case Maximum % Error % Error at _7=1.0

Case A-1 0.72% at _=0.10 0.19%

Case A-2 0.62% at _=0.21 0.18%

Case B-1 9.33% at _=0.43 2.15%

Case B-2 2.18%9.77% at _--0.69
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The conservationof energy is given in the following equation,the product of the

massflow rate and the total enthalpyper unit width,

rhHt [Y""" [Y"'"" I- p(y)t,(y)CvT(y) dy + 7p(y)[u(y)]3 dy , (139)
W JO dO

where Ht is the total enthalpy. This product is denoted as the energy flux throughout the

rest of the text. The non-dimensional energy flux is given as,

[Y".* p(y)u(y)C_,T(y) [_ .... l p(y)[u(y)]3 d y
JO p_l, _ 18 JO -

where

(]40)

1
,_t m

Cv (-_ - I)M£ (141)

Energy is conserved if the energy flux is a constant (for an adiabatic wall case). The

non-dimensional energy flux was calculated and found to be a constant approximately

equal to 1.35 for case A and approximately equal to 0.72 for case B across the entire

length of the fiat plate, implying that energy is conserved. The non-dimensional energy

flux for the entire flowfield and the boundary layer at the trailing edge are shown in the

following table, as well as the percentage of the entire flowfield non-dimensional energy

flux in the boundary layer.

Table 8: Non-Dimensional Energy Fluxes at Trailing Edge.

Test Case Entire Flowfield Boundary Layer % of Entire Field

Case A-1 1.350 0.191 14.1%

Case A-2 1.350 0.193 14.3%

Case B- 1 0.720 0.281 39.0%

Case B-2 0.720 0.283 39.3%
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The percenterror betweenthe non-dimensionalenergyflux at the leadingedgeand the

trailing edgeis presentedin Table9 for all cases.

Table9: PercentErrors for Non-DimensionalEnergyFlux.

Test Case Percent Error for 0.0<_<1.0

Case A- 1 0.001%

Case A-2 0.001%

Case B- 1 0.0003%

Case B-2 0.0001%

The small percent errors in the non-dimensional energy flux imply that it is constant and

energy is conserved. The PNS CFD code has been shown to be operating correctly for the

laminar cases by comparison with theoretical profiles and by checking for conservation

of mass, momentum, and energy.

4.2 Turbulent Flat Plate Flow (Zero Pressure Gradient)

The wall-function method was implemented into the CFD code and a fiat plate

model was used to test the wall-function method versus the fully-gfidded CFD code,

an Eckert reference method, and specific experimental data. The fully-gridded CFD test

cases have resolved laminar-viscous sub-layers and no-slip boundary conditions. The

pseudo-adiabatic wall temperature boundary condition, equation (124), is used for both

the wall-function cases and the fully-gridded CFD cases. The pseudo-adiabatic test case

inflow conditions are listed in Table 10, (where W-F denotes wall-function cases and
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F-G denotesfully-gridded CFD cases).

Table 10: TurbulentFlat PlatePseudo-AdiabaticInflow Conditions.

Parameter

Moo

ReL

Too

T_

Case C

2.0

20.0 x 106

222.0 K

381.2 K

Case D

5.0

15.0 x 10 6

100.0 K

548.1 K

Case E

8.0

20.0 x 106

150.0 K

1870.9 K

Pr 0.72 0.72 0.72

Prt 0.9 0.9 0.9

L (length) 1.0 m 1.0 m 1.0 m

sfact (W-F) 1.001 1.001 1.002

sfact (F-G) varies with x varies with x varies with x

CFL (W-F) 0.25 0.4 0.5

CFL (F-G) 0.1 0.1 0.1

pm 0.25 0.5 0.7

The domain of the computations is the same as shown in equation (120). The boundary

conditions are the same as those in equations (121), (122) and (124) for the fully-gridded

CFD case, with the changes listed in Section 2.4 for the wall-function method.

a) Conservation Laws

Similar to the laminar test case, the conservation laws were checked to ensure that

the PNS CFD code with no-slip boundary conditions and with slip boundary conditions

is functioning properly with respect to conservation of mass, momentum, and energy.

The non-dimensional mass flow rate for all three cases was calculated and found to be

a constant around 1.2 for the entire length of the flat plate for both the wall-function
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and fully-gridded cases,implying that massis conserved.The non-dimensionalmass

flow rate for the entire flowfield andthe boundarylayer at the trailing edgeareshown

in the following table,as well as thepercentageof thenon-dimensionalmassflow rate

in the boundary layer.

Table 11: Non-DimensionalMassFlow Ratesat the Trailing Edge.

Test Case Entire Flowfield Boundary Layer % in B. L.

Case C (W-F) 1.200 0.0186 1.55%

Case C (F-G) 1.200 0.0235 1.96%

Case D (W-F) 1.200 0.0167 1.39%

Case D (F-G) 1.200 0.0081 0.68%

Case E (W-F) 1.200 0.0173 1.44%

Case E (F-G) 1.200 0.0084 0.70%

The percent error between the non-dimensional mass flow rate at the leading edge and

the trailing edge is presented in Table 12.

Table 12: Percent Errors for Non-Dimensional Mass Flow Rate.

Test Case Percent Error for 0.0<{:<1.0

Case C (W-F) 0.029%

Case C (F-G) 0.015%

Case D (W-F) 0.016%

Case D (F-G) 0.002%

Case E (W-F) 0.007%

Case E (F-G) 0.001%
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The conservation of momentum using the stream thrust approach for cases C, D, and

E are presented in the following figures.
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Figure 29: Conservation of Momentum (Case C).
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Figure 30: Conservation of Momentum (Case D).
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Figure 31: Conservation of Momentum (Case E).

Momentum is conserved if equation (131) is satisfied. For all three wall-function cases,

the two curves differ by less than 50% for the entire length of the fiat plate. The distance

between streamwise locations (for the integration of the drag and the change in stream

thrust) differs for the fully-gridded and wall-function cases, implying that the curves for

the fully-gridded case should be consistent with each other, but should not be consistent

with the curves of the wall-function method. For the fully-gridded CFD case, the curves

match well for case D and E, but diverge for case C. The maximum percent error between

the curves over the length of the fiat plate and the percent error at the trailing edge for

all cases are given in Table 13.
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Table 13: PercentErrors for Non-DimensionalStreamThrustApproach.

Test Case Maximum % Error

Case C (W-F) 49% at _=1.0 49%

Case C (F-G) 28% at _=1.0 28%

Case D (W-F) 47% at _=0.98 42%

Case D (F-G) 6% at _=1.0 6%

Case E (W-F) 40% at _=0.84 35%

Case E (F-G) 5% at _=1.0 5%

% Error at _7=1.0

Another momentum check for the flat plate case is the momentum integral equation

given in equation (136). The results are plotted in the following figures.
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Figure 32: Conservation of Momentum (Case C).
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0.0020

Turbulent.Flat Ptate-_ 4

i :='/L WaiI-FunctionMetl'_ocl i ii pseud°iadlabaticwall

i_ x; Wail-Function Memod ! : .Momentum )ntegraJ Eqn

0.0015 I- . *"/,,. Fully'GriddedCFDCode ...... : .......

" '_ "¢_Fulty-GrlddedCFDCode ' ' _ ...............

0.0010 : .................... :

i ............................. i .............. i

0.0000 , , + , I , , , , I , , , , I , , i , I

0.00 0.25 0.50 x/L 0.75 1.00

Figure 34: Conservation of Momentum (Case E).

Equation (138) must be satisfied for momentum to be conserved. For the wall-function

cases, the two curves match closely, although the curve for the A0 term is somewhat

erratic, especially for case E where there is a spike in the curve near _--0.77. The
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fully-gridded CFD curves match well, except for case C. The maximum percent error

between the curves over the flat plate, for _>0.2, and the percent error at the trailing

edge for all cases are given in Table 14. It should be noted that the spatial momentum

variation is the difference between two large numbers and hence is difficult to accurately

predict.

Table 14: Percent Errors for Momentum Integral Equation Approach.

Test Case Maximum % Error % Error at _=1.0

Case C (W-F) 20% at _= 0.22 7%

_- 0.25 61%Case C (F-G) 271% at T-

Case D (W-F) 23% at _= 0.94 13%

Case D (F-G) 34% at _=0.72 29%

Case E (W-F) 85% at _=0.77 49%

Case E (F-G) 30% at _=0.93 27%

Energy is conserved if the non-dimensional energy flux, equation (140), is constant.

The non-dimensional energy flux is nearly constant for both the fully-gridded CFD case

and wall-function method, implying that energy is conserved. The non-dimensional

energy flux for the entire flowfield, the non-dimensional boundary layer energy flux at

the trailing edge, and the percentage of the non-dimensional energy flux in the boundary

layer are shown in the following table.
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Table 15: Non-DimensionalEnergyFluxesat the Trailing Edge.

Test Case Entire Flowfield Boundary Layer % in B. L.

Case C (W-F) 1.350 0.0417 3.09%

Case C (F-G) 1.350 0.0529 3.92%

Case D (W-F) 0.720 0.0200 2.78%

Case D (F-G) 0.720 0.0097 1.35%

Case E (W-F) 0.647 0.0187 2.89%

Case E (F-G) 0.647 0.0091 1.41%

The percent error between the energy flux at the leading edge and the trailing edge is

given in Table 16.

Table 16: Percent Errors for Non-Dimensional Energy Flux.

Test Case Percent Error for 0.0<_<1.0

Case C (W-F) 0.032%

Case C (F-G) 0.015%

Case D (W-F) 0.019%

Case D (F-G) 0.002%

Case E (W-F) 0.009%

Case E (F-G) 0.001%

In summary, these turbulent calculations provide a verification of the PNS CFD code's

ability to preserve, with reasonable accuracy, the flux related quantities for both the

fully-gridded CFD case and the wall-function method.

b) Wall Shear Stress

The analytically calculated wall shear stress from the wall-function methodology

was compared to the wall shear stress calculated with an Eckert reference method and
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the wall shearstresscalculatedwith the fully-gridded CFD code. An Eckert reference

method[14] was utilized to calculatewall shearstressdistribution for flat plate flow.

The inputs neededfor the code are listed below,

M_, Po, To, Tw, andz , (142)

where the subscript "o" denotes a stagnation condition and x is the streamwise distance

from the leading edge of the fiat plate. These quantities are used to calculate the

freestream conditions of temperature, pressure, density, speed of sound, and velocity

using the following set of equations,

p_ = po I + 7- IM (144)
2

Po+ (145)
P_- 1_ 1'_ '

a2 = _1_'/_ , (146)

U'_ = _ll_,l_ , (147)

where R is the ideal gas constant and a::>o is the freestream speed of sound. The freestream

viscosity is determined from Sutherland's law of the form,

3

[71_] _-[ 7'i+_S ] (148)
I,+ = t,, L+tJ LT +SJ '

where

l+j = 1.789+1x10 -5
k9

111 _CC

7'1 = 288.16 A" ( 149 )

,5' = 110.4 /(
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The recovery temperature for turbulent flow is:

17-1 £]Tr = Too 1 + P_'3 _ M , (150)

and the reference temperature is calculated using Eckert's formula,

Trey = 0.28 _ + 0.50 Tw + 0.22 T,. (151)

The reference density is determined using the equation of state,

P_ (152)
prcl - l_Z.c,, '

and the reference viscosity is calculated from Sutherland's law, equation (148),

3

Y_.r = ILl Tref + S]

Employing the reference quantities, the skin friction coefficient for turbulent flow is

calculated from the following equation,

,5 1

I 1¢f __ , Pref ltref , (154)
(Rc_) C L P_ J L tto_ J

where

1{_.-_: - (155)
#,'_.

Wall shear stress is calculated from the skin friction coefficient utilizing the relationship,

,)

r,,, = _cfp_U_, (156)
Z --
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The comparison between the wall shear stresses of the wall-function method, the fully-

gridded CFD case, and the Eckert reference method are presented in the Figures 35-37.
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Figure 35: Wall Shear Stress Distribution (Case C).
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Figure 36: Wall Shear Stress Distribution (Case D).
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Figure 37: Wall Shear Stress Distribution (Case E).

The wall-function method matched reasonably well with both the Eckert reference method

and the fully-gridded CFD case, especially for case C, with a percent difference between

the wall-function case and the fully-gridded CFD case at the trailing edge of only 15%.

Cases D and E did not match as well, but are adequate approximations with percent

errors of 25% and 40%, respectively at the trailing edge.

c) Fully-Gridded CFD Comparison

The velocity profiles generated with the wall-function methodology are compared (at

the same x-location) to those generated by the fully-gfidded CFD code in the following

figures. The velocity profiles for the entire field and the velocity profiles for just the
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boundary layer are presented.

Figure 38: Velocity Profiles for Entire Field (Case C).
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Figure 39: Velocity Profiles for Entire Field (Case D).
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Figure 40: Velocity Profiles for Entire Field (Case E).

The velocity profiles for the entire field are shown to illustrate the large gradients defining

the boundary layer and to emphasize the spatial scale of the boundary layer (i.e. a majority

of the flowfield is in the freestream). For clarity, the boundary-layer velocity profiles are

presented in the following figures and demonstrate the Barnwell and Wahls wall-function

method's ability to capture the structure of the boundary-layer velocity field.
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Figure 41: Velocity Profiles (Case C).
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Figure 42: Velocity Profiles (Case D).
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Figure 43: Velocity Profiles (Case E).

The velocity profiles for the boundary layer for all cases match well. The wall-function

velocity profile for case C differs from the fully-gridded CFD case in the outer part of

the boundary layer, but by less than 3%. The profiles generated by the wail-function

method for cases D and E match with the fully-gridded CFD case everywhere except for

the wail point (which is not supposed to match).

The temperature profiles in the boundary layer are also compared between the wall-

function method and the fully-gridded CFD case, again at the same x-location.
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Figure 44: Temperature Profiles (Case C).
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Figure 45: Temperature Profiles (Case D).
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Figure 46: Temperature Profiles (Case E).

The results for the temperature profiles in the boundary layer are similar to the velocity

profiles. All three cases match very well throughout the entire boundary layer.

The boundary-layer density profiles are also compared at the same x-location in the

following figures.
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Figure 48: Density Profiles (Case D).
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Figure 49: Density Profiles (Case E).

Again, all three wall-function cases match well in the inner part of the boundary layer

with the fully-gridded CFD cases, but not as well in the outer part of the boundary layer.

The implemented wall-function methodology generates profiles of velocity, temperature,

and density that compare with those obtained from the fully-gridded PNS CFD code.

To ensure that the modified PNS CFD code is able to yield consistent solutions (as

compared to those generated by the fully-gridded CFD code), results from cases C, D, and

E are presented detailing the pressure contours and indirectly, the shock wave angles.
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Figure 50: Pressure Contours (Case C, CFD).
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Figure 51: Pressure Contours (Case C, Wall-Function).
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Figure 52: Pressure Contours (Case D, CFD).
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Figure 53: Pressure Contours (Case D, Wall-Function).
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Figure 55" Pressure Contours (Case E, Wall-Function).

These results indicate that the wall-function method reproduces similar pressure contours

and shock-wave angles (as compared to the fully-gridded CFD case).
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d) Experimental Data Comparison and Computational Time Required

The experimental data collected by Mabey et al. [15] was used as a test case to

analyze the velocity profile produced by the wall-function method and the fully-gridded

CFD case. The freestream conditions for the experimental case are listed in Table 17.

Table 17: Experimental Freestream Conditions.

Parameter Experimental Conditions

Moo 4.5

ReL 27.9 x 10 6

Too 62.8 K

Tw 292.4 K

Pr 0.72

Prt 0.9

L (length) 1.0 m

sfact (W-F) 1.001

sfact (F-G) varies with x

CFL (W-F) 0.25

CFL (F-G) 0.1

pm 0.25
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The boundary-layer velocity profiles (at the same x-location) are presented in Figure 56.

0

0.000 0.005 0.010 y [m] 0.015 0.020

Figure 56: Velocity Profiles for the Experimental Test Case.

Both the wall-function velocity profile and the fully-gridded CFD velocity profile are a

reasonable approximation of the experimental data, and lend credibility to both techniques.

The main reason for incorporating the Barnwell and Wahls wall-function methodology

into the PNS CFD code is to increase computational speed. The computational time

required to generate solutions from {=0 to {7=1 on the Sabre computer, a Cray Y-

MP resident at NASA Langley Research Center, for the fully-gridded and wall-function

cases are tabulated below.

Table 18: Computational Time Required.

Case Fully-Gridded CFD Wall-Function

C 16729 seconds 554 seconds

D 1330 seconds 141 seconds

E 605 seconds 115 seconds
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The wall-function method utilizing an identical number of grid points as the fully-gridded

PNS CFD code decreased the computational time required by a factor of 30 for the Mach-

2 case, by a factor of 9 for the Mach-5 case, and by a factor of 5 for the Mach-8 case.

e) Implementation Issues

An analysis to address the significance of a small numerical change in the mass flow

rate near the wall (in the streamwise direction) due to the non-physical slip-wall velocity

boundary condition, upon implementation of the wall-function method (i.e. the slip-wall

velocity and density), utilizes a procedure similar to the displacement thickness method

for viscous/inviscid interactions. The displacement thickness, 6", physically represents

the distance a wall must be moved into the ttow for an inviscid flow analysis to accurately

represent the retarded mass flow of a viscous problem [ 12]. Conservation of mass requires

that the stream function at the edge of the boundary layer be the same in both the viscous

and inviscid cases. To illustrate the displacement thickness for an arbitrary boundary

layer profile, Figure 57 is presented.
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Figure 57: Illustration of Boundary-LayerDisplacementThickness.

Theconditionfor whichshadedareaA is equalto shadedareaB definesthedisplacement

thickness.The governingequationsfor the displacementthicknessare:

fo y_ fa yep u d_3 = p_ u, dy , (157)

and

b*= 1- P_---J-_ dy (158)
[9¢ tie

where "e" denotes a quantity at the edge of the boundary layer and E* is the displacement

thickness characterizing the mass flow rate deficiency in the boundary layer [6]. This

process allows viscous flow to modeled using an inviscid analysis.

A similar procedure is utilized to address the wall local mass flow rate addition

resulting from the implementation of the wall-function method and is graphically repre-
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sentedin Figure 58.
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Figure 58: Illustration of Wall-Function Boundary-Layer Displacement Thickness.

The analytical profile is assumed to be a representation of the exact solution to the flow-

field from the wall out to the match point and the wall-function method profile is assumed

to be a representation of the exact solution from the match point outwards. Conserva-

tion of mass requires that the stream function at the match point be the same as for the

exact solution. Thus, the wall-function method computation needs to be initiated from

a displaced wall (i.e. y(1)=y0), where Y0 is a type of displacement thickness computed

by requiring the shaded areas A and B in Figure 58 to be equal, or equivalently the

following equation is solved,

fY,,, f y,,_p,,,, u,,,, d!l = p,,, u,. d 9 , (159)
J 0 "-'go

where "an" denotes the analytical profile aIld m denotes the match point. The variable

Y0 is solved for via an iterative process and the resulting velocity profile (for case C)
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numerically generated employing Y0 as the wall location is presented in Figure 59.
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Figure 59: Velocity Profiles (Case C).

This modification to the Barnwell and Wahls methodology yielded a reduction in the slip-

wall velocity of approximately 13%. It is interesting to note that the resulting velocity

profiles are slightly degraded as compared to those generated with the original Barnwell

and Wahls method. However, the corresponding wall shear stress distributions (presented

in Figure 60) compare favorably with the fully-gridded CFD method.
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Figure 60: Wall Shear Stress Distribution (Case C).

This effort did not yield significant improvements to the original method and was not

pursued further due to lack of time.

4.3 Turbulent Corner Flow (Non-Zero Pressure Gradient)

a) Expansion Corner

To demonstrate the applicability of the Barnwell and Wahls method for flowfields

with streamwise pressure gradients, an expansion corner flowfield is examined. The

flowfield starts on a fiat plate (zero pressure gradient) and is integrated out to the _7--0.2

location, where a 2.50 downward sloping ramp is located. This test case is evaluated

with the freestream conditions of case C and is an approximation to the edge conditions.

The fully-gridded CFD case and wall-function method for the expansion comer case are
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presented in Figure 61, as well as the flat plate cases.
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Figure 61: Wall Shear Stress Distribution for the Expansion Corner.

The wall shear stress distribution for the expansion corner cases decreases rapidly at the

expansion corner (as expected). The wall-function method expansion corner case has a

similar trend as the fully-gridded CFD case. The pressure contours for the expansion

corner wall-function case are presented in Figure 62 and clearly illustrate the leading

edge compression field as well as the expansion field generated at the corner.
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Figure 62: Pressure Contours for Expansion Corner.

b) Compression Corner

The wall-function method is also applicable to compression corner flowfields, to

demonstrate this, a flowfield is tested on a flat plate (zero pressure gradient) out to the

_7--0.2 location and then a 2.5 ° upward sloping ramp is encountered. The freestream

conditions are again taken from case C. The fully-gridded CFD case and wall-function

method for the compression corner case are presented in Figure 63, as well as the flat

plate cases.
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Figure 63: Wall Shear Stress Distribution for the Compression Corner.

As expected, the wall shear stress distributions for the compression corner cases increase

at the comer and both methods yield similar trends The pressure contours for the

compression corner wall-function case is presented in Figure 64 and illustrates two

compression systems: (1) at the leading edge and (2) at the corner.
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Figure 64: Pressure Contours for Compression Comer.

The PNS CFD code has been validated for both the laminar and turbulent flat plate

cases with respect to conservation and theoretical profiles (Crocco for the former and

Eckert for the latter) as well as the experimental data of Mabey for the turbulent case.

The wall-function method produced numerical solutions quickly to within engineering

accuracy as compared with the fully-gridded CFD code as well as generating solutions

that compare with theoretical Eckert distributions and the experimental data of Mabey.

The wall-function method has also been shown to function for non-zero streamwise

pressure gradient cases.
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5. SUMMARY

The original PNS CFD code developed by Korte was modified to utilize the Barnwell

and Wahls wall-function methodology for turbulent flowfield analysis. The original

gridding scheme of the PNS CFD code was modified to account for the match point

location and to consistently adapt the numerical grid point locations based upon the

location of the first grid point off the wall. Consequently, the reduction in boundary-

layer grid resolution required a direct analytical calculation of the vorticity (utilized by

the turbulence model). Additionally, the Barnwell and Wahls theory was modified to

incorporate the Baldwin-Lomax turbulence model consistent with the PNS CFD code

(note: this research is the first to modify this wall-function theory for an outer-layer

turbulence model other than tile Clauser model).

The PNS CFD code was validated with laminar-viscous boundary layer (Mach-2

and Mach-5) solutions, to demonstrate that the code was functioning properly (without

turbulence modeling), since the algorithm was shown to generate solutions consistent

with the laminar theory of Crocco, as well as conserving the mass, momentum, and

energy fluxes.

Also, the PNS CFD code was validated for turbulent flow utilizing the Baldwin-

Lomax turbulence model. A flat plate test case at Mach-4.5 was utilized to test the

fully-gridded CFD code (resolved laminar-viscous sub-layer). The fully-gridded CFD

code produced data closely matching the experimental Mach-4.5 data of Mabey (at the

same x-location). The fully-gridded CFD code also conserved mass, momentum, and
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energy (to within engineering accuracy) as well as approximately reproducing the wall

shear stress distributions derived from an Eckert reference method in the Mach number

range of 2.0 to 8.0.

Results from the modified code (wall-function methodology) were investigated for

three turbulent adiabatic flat plate (zero streamwise pressure gradient) test cases and

two (non-zero streamwise pressure gradient) corner flow test cases. The test cases

utilized Mach numbers between 2.0 and 8.0, as well as Reynolds numbers between

15 million and 20 million (per meter). The wall-function method analytically generated

wall shear stress distributions which were in reasonable agreement with those generated

from the fully-gridded CFD code and an Eckert reference method. The implemented

wall-function methodology also generated boundary-layer profiles consistent with the

fully-gridded CFD code and the experimental data of Mabey. It is important to note that

an order of magnitude increase in computational speed was obtained employing the wall-

function method (as compared to the fully-gridded CFD code) and conservation of mass,

momentum, and energy was shown to be adequate. The two-dimensional spatial pressure

contours (flat plate test cases) matched closely between the fully-gridded CFD cases and

those generated from the wall-function method as well as the pressure contours for the

non-zero streamwise pressure gradient cases. Overall, the resultant trends in wall shear

stress distributions from the non-zero pressure gradient cases were shown to approximate

those of the fully-gridded CFD code.

The resulting modified code, with the implemented wall-function model, is envi-

sioned to be an engineering tool applicable to complex turbulent aerodynamic design
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studies based on its enhanced capability to yield engineering data at a vastly reduced

computational cost. Configurations can be quickly analyzed, and then more stringent

finite-difference solution methods, using highly resolved grids, can be subsequently ap-

plied to validate the engineering design.
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